PDU Prevalence Estimation Methods

Dr Gordon Hay
Centre for Public Health Liverpool John Moores University

g.hay@ljmu.ac.uk

Ice Breaking Exercise

Alcohol

Exercise - alcohol use

- How many people in Croatia drink?
- Street survey - ask 50 people
- 30 people say they drink (60\%)
- What would happen if 500 people were asked?
- Survey carried out at night in the centre of Zagreb does that matter?
- What does 'drink alcohol' mean?

Exercise - alcohol use

- Case definition
- Drink, drink alcohol
- Lifetime, last year, last month
- Recommended units, binge drinking
- Frequency
- Under-age drinking

Exercise - alcohol use

- Representative sample
- Zagreb, Croatia
- Age, gender, ethnic group
- Employed / unemployed
- 'Hard to reach groups'
- Prisoners, homeless

Exercise - alcohol use

- Sample size
- Should not affect the prevalence rate
- Can improve the reliability of the estimate

General principle

- Drug use is largely a hidden activity
- Information can be obtained from a sample of the population
- This information can be extrapolated to provide information on the entire population

British Crime Survey

British Crime Survey

- 0.1% of the population used heroin in last year (aged 15 to 59)
- Population of England
- 31,000,000 (aged 15 to 59)
- 31,000 people in England have used heroin in previous year

British Crime Survey

- Was the sample representative?
- Were respondents 'honest'
- What would the confidence interval be?

Indirect Methods

- Multiplier methods
- Capture-recapture methods
- Multiple indicator methods
- Truncated Poisson

Multiplier Methods

- Information can be obtained from a sample of drug users
- Contact with treatment services
- Mortality
- This information can be extrapolated to provide information on all drug users

Multiplier Methods (2)

- Benchmark
- Number of drug users in treatment
- Number of drug-related deaths
- Published mortality statistics
- Multiplier
- In-treatment rate
- Mortality rate
- Anecdotal evidence (between 1\% and 2\%)
- Specific studies

Drug related death data

Source: Health Statistics Quarterly

Number of deaths from drug related poisoning

2,762 deaths in 2005

Drug related death data

Source: Health Statistics Quarterly

Cause of death (males)

\square Mental and behavioural disorders
\square Accidental poisoning
\square Intentional self poisoning
\square Assault

Drug related death data

Source: Health Statistics Quarterly

Cause of death (females)

\square Mental and behavioural disorders
\square Accidental poisoning
\square Intentional self-poisoning
\square Assault

Drug related death data

Source: Health Statistics Quarterly

Drugs mentioned on death certificates

\square Heroin
\square Methadone

- Cocaine
\square Amphetamines
- Benzodiazepines
\square Anti-depressants
- Paracetamol
\square Other drugs

Drug related death data

 Source: Health Statistics Quarterly

1,506 deaths in 2005

Exercise

Mortality Multipliers

Two sample capture-recapture method

- Simple concept:
- Only a certain proportion of drug users are in contact with treatment agencies
- Examine the overlap between those in treatment and a second sample (e.g. Police)
- Find the proportion in treatment
- Thus estimate the total number of drug users

Two sample capture-recapture method

Two sample capture-recapture method

- Animal populations
- Capture a sample of fish
- Mark them
- Release them
- Recapture a sample at a later date
- Look for marks
- Estimate population size

Example - fish

- Unknown number of fish in a lake

Example - fish

- Unknown number of fish in a lake
- Catch a sample and mark them

Example - fish

- Unknown number of
 fish in a lake
- Catch a sample and mark them
- Let them loose

Example - fish

- Unknown number of
 fish in a lake
- Catch a sample and mark them
- Let them loose
- Recapture a sample and look for marks

Estimate population size

$$
\begin{array}{lc}
\mathrm{n}_{1}=\text { number in first sample } & 15 \\
\mathrm{n}_{2}=\text { number in second sample } & 10 \\
\mathrm{n}_{12}=\text { number in both samples } & 5 \\
\mathrm{~N}=\text { total population size } &
\end{array}
$$

assume that

$$
\begin{aligned}
\mathrm{n}_{1} / \mathrm{N}=\mathrm{n}_{12} / \mathrm{n}_{2} \quad \text { therefore } \quad 15 / \mathrm{N} & =5 / 10 \\
\mathrm{~N} & =(10 \times 15) / 5=30
\end{aligned}
$$

Two sample capture-recapture (drug use)

- Drug users
- Identify two samples
- Treatment agencies
- Police
- Find overlap
- Estimate population size

Drug use example

Treatment
GPs (family doctors) HIV Test Data

Police

695
148
46
76

Computer-based exercise

Find overlap between Treatment and Police Samples

Overlap between Police and treatment

Main assumption

- Samples are independent
- Police do not stand outside agency arresting people
- Participation in treatment does not reduce the need to commit crimes
- Samples are often not independent
- Can use a third samples to correct for lack of independence or account for any relationships

Three-sample method

- Statistical analysis
- Computer package (e.g. SPSS)
- Log-linear models
- Explain relationship between sources
- Estimate the size of the hidden population
- Estimate the total population size

Three-sample overlaps Venn Diagram

Hidden Population

Three-sample overlaps Contingency table

		Source 1				
		Present			Source 2	
		Present	Absent	Present	Absent	
Source 3	Present	a	b	e	f	
	Absent	c	d	g	x	

Three-sample overlaps Data table

Source 1	Source 2	Source 3	Count
1	1	1	a
1	1	0	c
1	0	1	b
1	0	0	d
0	1	1	e
0	1	0	g
0	0	1	f
0	0	0	x

Computer-based exercise

Find overlap pattern between Treatment, Police and GP data sources

Contingency table

		Treatment				
		Present			Absent	
		GPs				
		Present	Absent	Present	Absent	
Police	Present	6	15	4	51	
	Absent	62	612	76	-	

Data table

Treatment	GPs	Police	Count
1	1	1	6
1	1	0	62
1	0	1	15
1	0	0	612
0	1	1	4
0	1	0	76
0	0	1	51
0	0	0	-

Linear Regression (review)

- What is regression?
- What is a dependent variable?
- What are explanatory variables?

Prevalence v Treatment

X

$$
y=a x+c
$$

Linear Regression (examples)

$$
y=a x+c
$$

$$
\begin{aligned}
& y=a_{1} x_{1}+a_{2} x_{2}+c \\
& y=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+c
\end{aligned}
$$

Linear Regression (example)

- How much does advertising costs, number of shops and number of vouchers account for the variation in sales?

Worked Example

Linear regression Sales of mugs

Linear Regression (issues)

- Model Fitting
- Goodness of fit
- Predicted value
- Confidence interval

Linear Regression

Model	Sales $=-29.43+0.42($ shops $)+2.54$ (vouch) +1.02 (ads)
R Square	0.626
Predicted Value	15
Confidence Interval	-4 to 33

Log-linear Regression

- Equation for linear regression

$$
y=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+c
$$

- Equation for log-linear regression (independence model)

$$
\log (y)=\log \left(x_{1}\right)+\log \left(x_{2}\right)+\log \left(x_{3}\right)+\log (c)
$$

Computer-based exercise

Fit the independence model to the three sample data

Log-linear Regression

- How realistic is it to assume all sources are independent?
- Possible interactions
- How many interactions are there when there are three sources?
- FLIPCHART

Log-linear Regression

Models:

- constant+p1+p2+p3
- constant+p1+p2+p3+p1*p2
- constant+p1+p2+p3+p1*p3
- constant+p1+p2+p3+p2*p3
- constant+p1+p2+p3+p1*p2+p1*p3
- constant+p1+p2+p3+p1*p2+p2*p3
- constant+p1+p2+p3+p1*p3+p2*p3
- constant+p1+p2+p3+p1*p2+p1*p3+p2*p3

Computer-based exercise

Fit the other models to the three sample data

3-sample capture-recapture results

Model	Est	Lower	Upper	Deviance	df
Const+p1+p2+p3	921	699	1214	13.78	3
Const+p1+p2+p3+p1*p2	1530	943	2482	6.91	2
Const+p1+p2+p3+p1*p3	716	514	996	6.52	2
Const+p1+p2+p3+p2*p3	966	726	1286	11.72	2
Const+p1+p2+p3+p1*p2+p1*p3	969	342	2748	6.12	1
Const+p1+p2+p3+p1*p2+p2*p3	2081	1164	3721	0.85	1
Const+p1+p2+p3+p1*p3+p2*p3	750	531	1059	5.39	1
Const+p1+p2+p3+p1*p2+p1*p3 $+p 2^{*} p 3$	3598	912	14201	0.00	0

Log-linear Regression

- What's the best estimate?
- Deviance / likelihood ratio
- degrees of freedom
- Confidence intervals
- Credibility
- Population is closed
- Perfect matching
- Data sources should be representative
- Everyone has the same chance of appearing in any individual data source
- Presence in one source does not influence presence in another
- Can be relaxed with log-linear models
- Multivariate Indicator Method / Multiple Indicator Method
- Regression
- Linear regression
- Model selection
- 33 Drug Action Team (DAT) areas
- 2004/05 data
- 27 capture-recapture estimates
- 6 DAT areas where the capture-recapture analysis was not 'good enough'
- Need to 'extrapolate' to get estimates for those areas

London CRC Estimates

London DAT estimates

rates per 1,000

London DAT estimates

Extrapolation (regression)

prevalence = constant

$$
y=c
$$

Prevalence v Treatment

Extrapolation (regression)

prevalence = constant

$$
y=c
$$

prevalence $=$ constant \times treatment

$$
y=a x
$$

Computer-based exercise

What would be a 'treatment' multiplier for London

Prevalence v Treatment

Prevalence v Treatment

Prevalence v Treatment

Computer-based exercise

What would be a simple regression model for London

Extrapolation (regression)

prevalence = constant

$$
y=c
$$

prevalence $=$ constant \times treatment

$$
y=a x \longleftarrow \text { treatment multiplier }
$$

- How many indicators to put into model
- All of them?
- All that initially seem sensible?
- Only those that are statistically significant?
- Data reduction
- Small number of anchor points
- Principal component analysis
- Reduces many indicators into 1 or 2 factors

Truncated Poisson

- Can be used with data from only one source
- Needle exchange visits
- Count how many people have visited
- Once
- Twice
- Count the total number of people
- Can estimate the number of people who have visited zero time = hidden population

Truncated Poisson

$$
\operatorname{est}(n)=S /\left[1-\exp \left(-2 f_{2} / f_{1}\right)\right]
$$

Where
$f_{1}=$ number of people attending only once
$f_{2}=$ number of people attending twice
$S=$ total number of people attending

- Introduction
- Two sample capture-recapture analysis
- Using Excel to find overlap patterns
- Three sample capture-recapture analysis
- Multiple Indicator Method
- Truncated Poisson method

Comments? Questions?

g.hay@ljmu.ac.uk

