

dream[™] plan[⊕] achieve[⊥]

PDU Prevalence Estimation Methods

Dr Gordon Hay Centre for Public Health Liverpool John Moores University

g.hay@ljmu.ac.uk

Ice Breaking Exercise

Alcohol

dream[→] plan[⊕] achieve

- How many people in Croatia drink?
- Street survey ask 50 people
 - 30 people say they drink (60%)
- What would happen if 500 people were asked?
- Survey carried out at night in the centre of Zagreb does that matter?
- What does 'drink alcohol' mean?

- Case definition
 - Drink, drink alcohol
 - Lifetime, last year, last month
 - Recommended units, binge drinking
 - Frequency
 - Under-age drinking

JMU

- Representative sample
 - Zagreb, Croatia
 - Age, gender, ethnic group
 - Employed / unemployed
 - 'Hard to reach groups'
 - Prisoners, homeless

- Sample size
 - Should not affect the prevalence rate
 - Can improve the reliability of the estimate

General principle

- Drug use is largely a hidden activity
- Information can be obtained from a sample of the population
- This information can be extrapolated to provide information on the entire population

British Crime Survey

dream plan achieve Γ

British Crime Survey

- 0.1% of the population used heroin in last year (aged 15 to 59)
- Population of England

- 31,000,000 (aged 15 to 59)

31,000 people in England have used heroin in previous year

British Crime Survey

• Was the sample representative?

• Were respondents 'honest'

• What would the confidence interval be?

Indirect Methods

• Multiplier methods

• Capture-recapture methods

• Multiple indicator methods

• Truncated Poisson

Multiplier Methods

- Information can be obtained from a sample of drug users
 - Contact with treatment services
 - Mortality
- This information can be extrapolated to provide information on all drug users

Multiplier Methods (2)

JMU

- Benchmark
 - Number of drug users in treatment
 - Number of drug-related deaths
 - Published mortality statistics
- Multiplier
 - In-treatment rate
 - Mortality rate
 - Anecdotal evidence (between 1% and 2%)
 - Specific studies

Source: Health Statistics Quarterly

dream plan achieve Γ

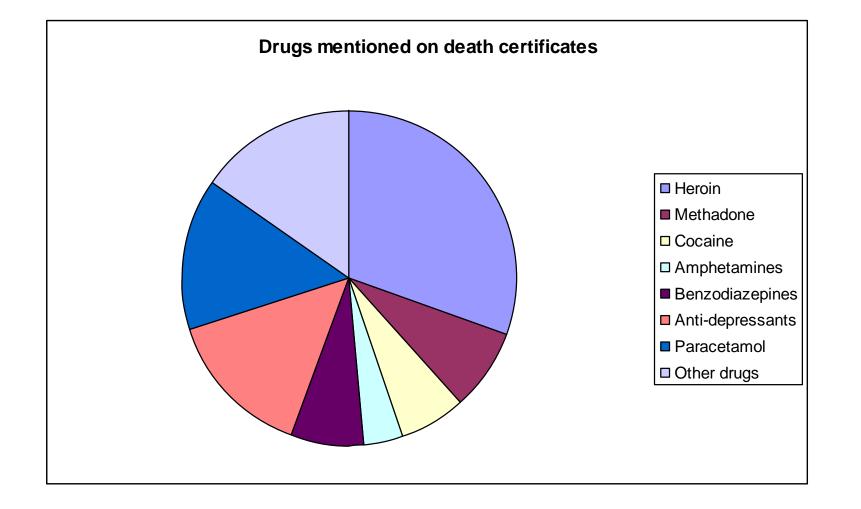
2,762 deaths in 2005

Source: Health Statistics Quarterly

plan $^{\oplus}$ achieve $^{\Sigma}$

dream

Source: Health Statistics Quarterly



Source: Health Statistics Quarterly

dream plan achieve \mathbb{T}

Source: Health Statistics Quarterly

dream plan achieve Γ

1,506 deaths in 2005

Exercise

Mortality Multipliers

Two sample capture-recapture method

- Simple concept:
 - Only a certain proportion of drug users are in contact with treatment agencies
- Examine the overlap between those in treatment and a second sample (e.g. Police)
- Find the proportion in treatment
- Thus estimate the total number of drug users

Two sample capture-recapture method

dream plan achieve \mathbb{T}

Two sample capture-recapture method

- Animal populations
 - Capture a sample of fish
 - Mark them
 - Release them
 - Recapture a sample at a later date
 - Look for marks
 - Estimate population size

 Unknown number of fish in a lake

- Unknown number of fish in a lake
- Catch a sample and mark them

- Unknown number of fish in a lake
- Catch a sample and mark them
- Let them loose

dream[™] plan[⊕] achieve[™]

- Unknown number of fish in a lake
- Catch a sample and mark them
- Let them loose
- Recapture a sample and look for marks

Estimate population size

- $n_1 =$ number in first sample 15
- $n_2 =$ number in second sample 10
- n_{12} = number in both samples 5
- N = total population size

assume that

$$n_1/N = n_{12}/n_2$$
 therefore 15/N = 5/10

$$N = (10 \times 15) / 5 = 30$$

Two sample capture-recapture (drug use)

- Drug users
 - Identify two samples
 - Treatment agencies
 - Police
 - Find overlap
 - Estimate population size

dream plan achieve

Drug use example

	Ν
Treatment	695
GPs (family doctors)	148
HIV Test Data	46
Police	76

Computer-based exercise

Find overlap between Treatment and Police Samples

Overlap between Police and treatment

dream $\widehat{}$ plan achieve $\widehat{}$

1 liverpool

Main assumption

- Samples are independent
 - Police do not stand outside agency arresting people
 - Participation in treatment does not reduce the need to commit crimes
- Samples are often not independent
- Can use a third samples to correct for lack of independence or account for any relationships

Three-sample method

- Statistical analysis
 - Computer package (e.g. SPSS)
 - Log-linear models
 - Explain relationship between sources
- Estimate the size of the hidden population
- Estimate the total population size

Three-sample overlaps Venn Diagram

dream $\widehat{}$ plan achieve $\widehat{}$

Three-sample overlaps Contingency table

		Source 1			
		Present		Absent	
		Source 2			
		Present	Absent	Present	Absent
Source 3	Present	а	b	e	f
	Absent	С	d	g	X

Three-sample overlaps Data table

Source 1	Source 2	Source 3	Count
1	1	1	а
1	1	0	С
1	0	1	b
1	0	0	d
0	1	1	е
0	1	0	g
0	0	1	f
0	0	0	X

Computer-based exercise

Find overlap pattern between Treatment, Police and GP data sources

Overlap between treatment, GP and Police data

dream plan achieve Σ

Contingency table

		Treatment				
		Pres	ent	Absent		
		GPs				
		Present	Absent	Present	Absent	
Police	Present	6	15	4	51	
	Absent	62	612	76	-	

Data table

Treatment	GPs	Police	Count	
1	1	1	6	
1	1	0	62	
1	0	1	15	
1	0	0	612	
0	1	1	4	
0	1	0	76	
0	0	1	51	
0	0	0	-	

Linear Regression (review)

- What is regression?
- What is a dependent variable?
- What are explanatory variables?

Χ

y = ax + c

🗧 liverpool

Linear Regression (examples)

$$y = ax + c$$

$$y = a_1 x_1 + a_2 x_2 + c$$

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3 + c$$

Linear Regression (example)

- Sales of mugs in 120 areas
- How much does advertising costs, number of shops and number of vouchers account for the variation in sales?

Worked Example

Linear regression Sales of mugs

Linear Regression (issues)

- Model Fitting
- Goodness of fit
- Predicted value
- Confidence interval

Linear Regression

Model	Sales = -29.43 + 0.42(shops) + 2.54(vouch) + 1.02(ads)			
R Square	0.626			
Predicted Value	15			
Confidence Interval	-4 to 33			

Log-linear Regression

• Equation for linear regression

 $y = a_1 x_1 + a_2 x_2 + a_3 x_3 + c$

Equation for log-linear regression (independence model)

 $\log(y) = \log(x_1) + \log(x_2) + \log(x_3) + \log(c)$

Computer-based exercise

Fit the independence model to the three sample data

Log-linear Regression

- How realistic is it to assume all sources are independent?
- Possible interactions
- How many interactions are there when there are three sources?
 - FLIPCHART

Log-linear Regression

Models:

- constant+p1+p2+p3
- constant+p1+p2+p3+p1*p2
- constant+p1+p2+p3+p1*p3
- constant+p1+p2+p3+p2*p3
- constant+p1+p2+p3+p1*p2+p1*p3
- constant+p1+p2+p3+p1*p2+p2*p3
- constant+p1+p2+p3+p1*p3+p2*p3
- constant+p1+p2+p3+p1*p2+p1*p3+p2*p3

Computer-based exercise

Fit the other models to the three sample data

3-sample capture-recapture results

Model	Est	Lower	Upper	Deviance	df
Const+p1+p2+p3	921	699	1214	13.78	3
Const+p1+p2+p3+p1*p2	1530	943	2482	6.91	2
Const+p1+p2+p3+p1*p3	716	514	996	6.52	2
Const+p1+p2+p3+p2*p3	966	726	1286	11.72	2
Const+p1+p2+p3+p1*p2+p1*p3	969	342	2748	6.12	1
Const+p1+p2+p3+p1*p2+p2*p3	2081	1164	3721	0.85	1
Const+p1+p2+p3+p1*p3+p2*p3	750	531	1059	5.39	1
Const+p1+p2+p3+p1*p2+p1*p3 +p2*p3	3598	912	14201	0.00	0

Log-linear Regression

JMU

- What's the best estimate?
 - Deviance / likelihood ratio
 - degrees of freedom
 - Confidence intervals
 - Credibility

Key assumptions

- Population is closed
- Perfect matching
- Data sources should be representative
- Everyone has the same chance of appearing in any individual data source
- Presence in one source does not influence presence in another
 - Can be relaxed with log-linear models

dream plan dream achieve Γ

dream[™] plan[⊕] achieve[™]

- Multivariate Indicator Method / Multiple Indicator Method
- Regression
 - Linear regression
 - Model selection

- 33 Drug Action Team (DAT) areas
- 2004/05 data
 - 27 capture-recapture estimates
 - 6 DAT areas where the capture-recapture analysis was not 'good enough'
 - Need to 'extrapolate' to get estimates for those areas

London CRC Estimates

ZJM

liverpoo

London DAT estimates rates per 1,000

liverpoo

London DAT estimates

dream $\widehat{}$ plan achieve $\widehat{}$

liverpool

Extrapolation (regression)

prevalence = *constant*

y = c

dream plan dream achieve

liverpool

Extrapolation (regression)

prevalence = *constant*

$$y = c$$

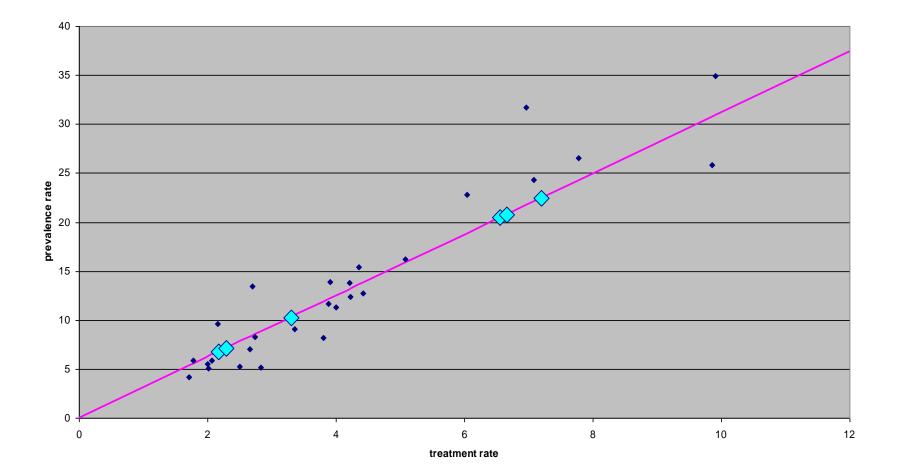
prevalence = *constant* × *treatment*

$$y = ax$$

Computer-based exercise

What would be a 'treatment' multiplier for London

dream plan dream achieve


liverpool

dream plan dream achieve

liverpool

dream plan achieve \mathbb{T}

Computer-based exercise

What would be a simple regression model for London

Extrapolation (regression)

dream plan achieve Γ

prevalence = constant y = c $prevalence = constant \times treatment$ $y = ax \quad \longleftarrow treatment \ multiplier$

$$y = ax + b$$

$$y = a_1 x_1 + a_2 x_2 + b$$

$$y = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b$$

MIM

plan[®] achieve

dream

- How many indicators to put into model
 - All of them?
 - All that initially seem sensible?
 - Only those that are statistically significant?
- Data reduction
 - Small number of anchor points
 - Principal component analysis
 - Reduces many indicators into 1 or 2 factors

Truncated Poisson

• Can be used with data from only one source

Needle exchange visits

- Count how many people have visited
 - Once
 - Twice
- Count the total number of people
- Can estimate the number of people who have visited zero time = hidden population

dream plan achieve 2

Truncated Poisson

$$est(n) = S / [1 - exp(-2 f_2 / f_1)]$$

Where

- f₁ = number of people attending only once
- f₂ = number of people attending twice
- S = total number of people attending

Review

- Introduction
- Two sample capture-recapture analysis
- Using Excel to find overlap patterns
- Three sample capture-recapture analysis
- Multiple Indicator Method
- Truncated Poisson method

Comments? Questions?

g.hay@ljmu.ac.uk

